Ethnopharmacological relevanceThe combination of Alisma and Atractylodes (AA), a classical traditional Chinese herbal decoction, may protect against cerebral ischaemia/reperfusion injury (CIRI). However, the underlying mechanism has not been characterized. Intriguingly, exosomal microRNAs (miRNAs) have been recognized as vital factors in the pharmacology of Chinese herbal decoctions. Aim of the studyThe aim of the present study was to assess whether the neuroprotective effect of AA was dependent on the efficient transfer of miRNAs via exosomes in the brain. Materials and methodsBilateral common carotid artery ligation (BCAL) was used to induce transient global cerebral ischaemia/reperfusion (GCI/R) in C57BL/6 mice treated with/without AA. Neurological deficits were assessed with the modified neurological severity score (mNSS) and Morris water maze (MWM) test. Western blot (WB) analysis was used to detect the expression of sirtuin 1 (SIRT1) in the cerebral cortex. The inflammatory state was quantitatively evaluated by measuring the expression of phospho-Nuclear factor kappa B (p–NF–κB), Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) using WB analysis and glial fibrillary acidic protein (GFAP) immunohistochemical staining. The protein expression of zonula occluden-1 (ZO-1), occludin, caudin-5 and CD31 was examined by immunohistochemical staining to determine blood‒brain barrier (BBB) permeability. Exosomes were extracted from the brain interstitial space by ultracentrifugation and identified by transmission electron microscopy (TEM), WB analysis and nanoparticle tracking analysis (NTA). The origin of exosomes was clarified by measuring the specific mRNAs within exosomes via Real Time Quantitative PCR (RT‒qPCR). Differential miRNAs in exosomes were identified using microarray screening and were validated by RT‒qPCR. Exosomes were labelled with fluorescent dye (PKH26) and incubated with bEnd.3 cells, the supernatant was collected, IL-1β/TNF-α expression was measured using enzyme-linked immunosorbent assay (ELISA), total RNA was extracted, and miR-200a-3p/141-3p expression was examined by RT‒qPCR. In addition, the levels of miR-200a-3p/141-3p in oxygen glucose deprivation/reoxygenation (OGD/R)-induced bEnd.3 cells were quantified. The direct interaction between miR-200a-3p/141-3p and the SIRT1 3′ untranslated region (3′UTR) was measured by determining SIRT1 expression in bEnd.3 cells transfected with the miR-200a-3p/141-3p mimic/inhibitor. ResultsSevere neurological deficits and memory loss caused by GCI/R in mice was markedly ameliorated by AA treatment, particularly in the AA medium-dose group. Moreover, AA-treated GCI/R-induced mice showed significant increases in SIRT1, ZO-1, occludin, caudin-5, and CD31 expression levels and decreases in p–NF–κB, IL-1β, TNF-α, and GFAP expression levels compared with those in untreated GCI/R-induced mice. Furthermore, we found that miR-200a-3p/141-3p was enriched in astrocyte-derived exosomes from GCI/R-induced mice and could be inhibited by treatment with a medium dose of AA. The exosomes mediated the transfer of miR-200a-3p/141-3p into bEnd.3 cells, promoted IL-1β and TNF-α release and downregulated the expression of SIRT1. No significant changes in the levels of miR-200a-3p/141-3p were observed in OGD/R-induced bEnd.3 cells. The miR-200a-3p/141-3p mimic/inhibitor decreased/increased SIRT1 expression in bEnd.3 cells, respectively. ConclusionOur findings demonstrated that AA attenuated inflammation-mediated CIRI by inhibiting astrocyte-derived exosomal miR-200a-3p/141-3p by targeting the SIRT1 gene, which provided further evidence and identified a novel regulatory mechanism for the neuroprotective effects of AA.