The prevalence of metabolic syndrome MetS in HIV-infected patients on chronic antiretroviral (ARV) therapy continues to rise rapidly, with an estimated 21% experiencing insulin resistance. The progression of insulin resistance is strongly related to mitochondrial stress and dysfunction. This study aimed to draw links between the singular and combinational use of Tenofovir disoproxil fumarate (TDF), Lamivudine (3TC), and Dolutegravir (DTG) on mitochondrial stress and dysfunction as an underlying mechanism for insulin resistance following a 120 h treatment period using an in vitro system of human liver cells (HepG2). The relative protein expressions of pNrf2, SOD2, CAT, PINK1, p62, SIRT3, and UCP2, were determined using Western blot. Transcript levels of PINK1 and p62 were assessed using quantitative PCR (qPCR). ATP concentrations were quantified using luminometry, and oxidative damage (malondialdehyde (MDA) concentration) was measured using spectrophotometry. The findings suggest that despite the activation of antioxidant responses (pNrf2, SOD2, CAT) and mitochondrial maintenance systems (PINK1 and p62) in selected singular and combinational treatments with ARVs, oxidative damage and reduced ATP production persisted. This was attributed to a significant suppression in mitochondrial stress responses SIRT3 and UCP2 for all treatments. Notable results were observed for combinational treatments with significant increases in pNrf2 (p = 0.0090), SOD2 (p = 0.0005), CAT (p = 0.0002), PINK1 (p = 0.0064), and p62 (p = 0.0228); followed by significant decreases in SIRT3 (p = 0.0003) and UCP2 (p = 0.0119) protein expression. Overall there were elevated levels of MDA (p = 0.0066) and decreased ATP production (p = 0.0017). In conclusion, ARVs induce mitochondrial stress and dysfunction, which may be closely associated with the progression of insulin resistance.