Sex influences many biological outcomes, but how sex affects hematopoietic stem cell (HSC) aging and hematological disorders is poorly understood. The widespread use of young animal models to study age-related diseases further complicates these matters. Using aged and long-lived BALB/c mouse models, we discovered that aging mice exhibit sex-dependent disparities, mirroring aging humans, in developing myeloid skewing, anemia, and leukemia. These disparities are underlined by sex-differentiated HSC aging characteristics across the population, single-cell, and molecular levels. The HSC population expanded significantly with aging and longevity in males, but this occurred to a much lesser degree in aging females that instead expanded committed progenitors. Aging male HSCs are more susceptible to BCR-ABL1 transformation with faster development of chronic myeloid leukemia (CML) than female HSCs. Additionally, the loss of the aging regulator Sirt1 inhibited CML development in aging male but not female mice. Our results showed for the first time that sex-differentiated HSC aging impacts hematopoiesis, leukemogenesis, and certain gene functions. This discovery provides insights into understanding age-dependent hematological diseases and sex-targeted strategies for the treatment and prevention of certain blood disorders and cancer.
Read full abstract