Abstract

microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.