AbstractLiquid phase sintered SiC ceramics were joined using magnesia‐alumina‐silica (MAS) glass‐ceramic fillers without applied pressure. Four different filler compositions with 9.3–25.2 wt.% MgO, 20.7–33.6 wt.% Al2O3, and 49.2–68.1 wt.% SiO2 were studied. The effects of filler composition and joining temperature (1450–1600°C) on the joint strength were investigated. All compositions exhibited an optimum joining temperature at which the maximum joint strength was obtained. A low joining temperature resulted in poor wetting of the SiC substrate due to the high viscosity of the filler. Whereas a high joining temperature caused dewetting and large unfilled sections in the interlayer due to the deleterious interfacial reactions. The joint strength was inversely proportional to the interlayer thickness, which was a function of filler composition and joining temperature. The SiC ceramic joined at 1525°C with MgO‐25 wt.% Al2O3‐60 wt.% SiO2 filler exhibited a four‐point bending strength of 286 ± 40 MPa.