Abstract An Anti-Gravity Loop-Shaped Heat Pipe (AGLSHP) with a Continuous Graded Pore-Size Wick (CGPSW) was developed for the cooling of electronic devices at the anti-gravity orientation on the ground. At this orientation, heat is transferred toward the direction of the gravitational field. The AGLSHP consists of an evaporator, a condenser, a vapor line and a liquid line. The CGPSW is formed by sintered copper powders and it is filled inside the evaporator and the liquid line. The corresponding test system was developed to investigate the start-up characteristics and heat transfer performance of the AGLSHP at the anti-gravity orientation. The experimental result shows that, the AGLSHP has the capability to start-up reliably without any temperature overshoot or oscillation at the test heat loads. And the AGLSHP is able to keep the temperature of the evaporator below 105 °C and the overall thermal resistance below 0.24 °C/W at the heat load of 100 W. It is also found that the ideal heat load range of the AGLSHP at the anti-gravity orientation is from 30 W to 90 W. In this power range the overall thermal resistance stabilizes at about 0.15 °C/W, and the maximum temperature of the evaporator is lower than 84 °C at the heat load of 90 W.