The ten-dimensional effective Lagrangian [Formula: see text] for the gravitational sector of the heterotic superstring theory is known up to quartic higher-derivative order [Formula: see text]. In cosmology, the reduced, four-dimensional line element assumes the Friedmann form ds2 = dt2 - a(t)2dx2, where t is comoving time and a(t) ≡ a0eα(t) is the radius function of the three-space dx2, whose curvature is k = 0, ± 1. The four-Lagrangian can then be expressed as the power-series [Formula: see text], where ˙ ≡ d/dt, from which the field equation can be derived by the method of Ostrogradsky. Here, we determine the coefficients Λ0, An, Bn, Cn, and Kn, which are all non-vanishing in general. We recover the previously obtained, high-curvature, anti-de Sitter vacuum state [Formula: see text] with effective cosmological constant Λ = {18/[175ζ(3) - 1/2]}1/3A r κ-2, whose existence makes it possible to envisage a singularity-free and horizon-free cosmological solution, stable to linear perturbations. It is interesting that all the coefficients of quartic origin arise from the near-cancellation of sums of opposite sign but magnitude f ≈ (28.6–369) times larger than the answer. They thus exhibit a slight asymmetry with regard to positive and negative energies, the anti-de Sitter vacuum being characterized by positive Nordström energy, and therefore only accessible at high curvatures. This vacuum state is a Bose–Einstein condensate of non-interacting gravitons at zero temperature, which, referred to comoving time, can only be formulated after the Wick rotation t → ±iτ, resulting in an imaginary horizon.
Read full abstract