Geometric rotary axis errors are one of the main factors affecting the dispensing positioning accuracy of five-axis vision dispensing machines. Hence, the accurate detection and compensation of these error terms is an important and challenging problem. In this study, a decoupling identification method for both position-dependent geometric errors and position-independent geometric errors of a rotary dispensing table is proposed based on vision measurement technology. According to this strategy, the screw theory and exponential product formula are used to establish a kinematic model of the end-effector, followed by the definition of the mapping relationship between position-independent geometric errors and axis posture. Then, to separate the coupling error terms of the rotating axes, a step-by-step identification strategy is proposed based on the least squares method. Furthermore, a coordinate search-based error compensation algorithm is developed, which avoids the inverse singular value problem and is insensitive to the error model. Finally, the effectiveness of the proposed identification algorithm and compensation algorithm is experimentally validated.
Read full abstract