In the current research of debris flow geological disaster prediction, determining reasonable disaster-inducing factors and ensuring the accuracy and rapidity of the prediction model are considered vital issues, and also, essential foundations for disaster early warning and disaster prevention and mitigation. Aiming at the problems of low prediction accuracy and long prediction time in the current debris flow research, firstly, six debris flow impact factors were selected relying on the fast multiple principal component extraction (FMPCE) algorithm, including rainfall, slope gradient, gully bed gradient, relative height difference, soil moisture content and pore water pressure. Next, based on the broad learning (BL) algorithm, the debris flow prediction model based on FMPCE and the optimized BL is established with the input of debris flow-inducing factors and the output of debris flow probability. Then the model is optimized using matrix stochastic approximate singular value decomposition (SVD), and the debris flow disaster prediction model, based on SVDBL, is constructed. The prediction results of the optimized model are compared with those of the gradient descent optimized the BP neural network model(GD-BP), Support Vector Machines model(SVM) based on grid search and BL model. The results show that the accuracy of SVDBL is 7.5% higher than that of GD-BP, 3% higher than that of SVM and 0.5% higher than that of BL. The RMSE sum of SVDBL was 0.05870, 0.0478 and 0.0227 less than that of GD-BPSVM and BL, respectively; the MAPE sum of SVDBL was 1.95%, 1.66% and 0.49% less than that of GD-BPSVM and BL; the AUC values of SVDBL were 12.75%, 7.64% and 2.79% higher than those of the above three models, respectively. In addition, the input dataset is expanded to compare the training time of each model. The simulation results show that the prediction accuracy of this model is the highest and the training time is the shortest after the dataset is expanded. This study shows that the BL can be used for debris flow prediction, and can also provide references for disaster early warning and prevention.
Read full abstract