Abstract

Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that provides low-rank approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-performance computational settings. In this article, optimized randUTV implementations are presented for both shared-memory and distributed-memory computing environments. For shared memory, randUTV is redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from data synchronization points to achieve acceleration over the standard blocked algorithm based on a purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The performance of our new codes compares favorably with competing factorizations available on both shared-memory and distributed-memory architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.