A flexible-cable overhead crane system having large swing is studied as a multi-degree underactuated system. To resolve the system dynamics complexities, a second order singular perturbation (SP) formulation is developed to divide the crane dynamics into two one-degree underactuated fast and slow subsystems. Then, a control system is designed based on the two-time scale control (TTSC) method to: (a) transfer the payload to a desired location and decrease the payload swing, by a nonlinear controller for slow dynamics; and (b) suppress transverse vibrations of the cable, by a linear controller for fast dynamics. The nonlinear controller is designed based on an energy shaping technique according to the controlled Lagrangian method. To demonstrate the control system effectiveness, an example of the flexible cable crane systems with a lightweight payload is considered to perform simulations. In addition to the proposed control system, two other controllers; namely, a linear controller based on the linear–quadratic regulator method and a TTSC based on the approximate SP model and partial feedback linearization, are applied to the system for comparison. Also, by applying a disturbance force to the trolley and considering 10% uncertainty in crane parameters, the control performance against disturbances and parameter uncertainties is investigated.
Read full abstract