The fabrication, characterization, and radiation response of single-walled carbon nanotube (SWCNT) thin-film field effect transistors (SWCNT-TFTs) has been performed. SWCNT-TFTs were fabricated on SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -Si substrates from 98% pure semiconducting SWCNTs separated by density gradient ultracentrifugation. Optical and Raman characterization, in concert with measured drain current I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> /I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> ratios, up to 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> , confirmed the high enrichment of semiconducting-SWCNTs. Total ionizing dose (TID) effects, up to 10 MRads, were measured in situ for a SWCNT-TFT under static vacuum. The results revealed a lateral translation of the SWCNT-TFT transfer characteristics to negative gate bias resulting from hole trapping within the SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -SWCNT interface. Additional TID exposure conducted in air on the same device had the opposite effect, shifting the transfer characteristics to higher gate voltage, and increasing the channel conductance. No significant change was observed in the device mobility or the SWCNT Raman spectra following a TID exposure of 10 Mrad(Si), indicating extrinsic factors dominate the transfer characteristics in the SWCNT-TFT devices during irradiation. The extrinsic effects of charge trapping and the role that gas adsorption plays in the radiation response are discussed.