Antibacterial packaging holds promise in addressing food spoilage by inactivating bacteria, but current antimicrobial packaging solutions face challenges like depletion of antibacterials and concerns of antibiotic abuse. In response to these limitations of existing packaging materials, we developed a novel antibacterial packaging film by incorporating titanium dioxide (TiO2)- tetra(4-carboxyphenyl) porphyrin (TcPP) conjugates into cellulose nanofibrils (CNF) films. Unlike conventional antimicrobial packaging, this film harnesses visible light energy to excite electrons from TcPP to TiO2, generating reactive oxygen species (ROS) that inactivate bacteria without relying on antibiotics. Results demonstrated that the film reduced 4.5, 4.6, 4.1, and 4.7-log Escherichia coli, Pseudomonas fluorescens, Leuconostoc lactis, and Listeria innocua, respectively, in phosphate-buffered saline within 72h under 6000 lux light (3.13mW/cm2). The antimicrobial efficacy decreased as the light intensity decreased. Notably, it retains significant antimicrobial properties even under an extremely low light intensity of 600 lux (0.60mW/cm2). The analysis also revealed that singlet oxygen and hydrogen peroxide are the major generated ROS from the film under light exposure. When applied to cucumbers, the film reduced E. coli by 3.5 logs after 48-hour light exposure. The designed photocatalytic antibacterial film represents a major advancement in sustainable food preservation, reducing food waste by extending the shelf life of fresh produce.
Read full abstract