The emergence of the "super fungus" Candida auris poses a significant threat to human health, given its multidrug resistance and high mortality rates. Therefore, developing a new antifungal strategy is necessary. Our previous research showed that Baicalein (BE), a key bioactive compound from the dried root of the perennial herb Scutellaria baicalensis Georgi, has strong fungistatic properties against C. auris. Nevertheless, the antifungal activity of BE against C. auris and its mechanism of action requires further investigation. In this study, we explored how BE affects this fungus using various techniques, including scanning electron microscopy (SEM), Annexin V-FITC apoptosis detection, CaspACE FITC-VAD-FMK In Situ Marker, reactive oxygen species (ROS) assay, singlet oxygen sensor green (SOSG) fluorescent probe, enhanced mitochondrial membrane potential (MMP) assay with JC-1, DAPI staining, TUNEL assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Our findings revealed that BE induced several apoptotic features, including phosphatidylserine (PS) externalization, metacaspase activation, nuclear condensation and DNA fragmentation. BE also increased intracellular ROS levels and altered mitochondrial functions. Additionally, transcriptomic analysis and RT-qPCR validation indicated that BE may induce apoptosis in C. auris by affecting ribosome-related pathways, suggesting that ribosomes could be new targets for antifungal agents, in addition to cell walls, membranes, and DNA. This study emphasizes the antifungal activity and mechanism of BE against C. auris, offering a promising treatment strategy for C. auris infection.