Vibronic coupling plays a crucial role in singlet fission whereby a singlet exciton splits into two triplet excitons. In order to reveal the physicochemical origin of the vibronic coupling associated with singlet fission as well as to clarify its relationship with chemical structure, we evaluate relevant vibronic couplings from the viewpoint of their spatial contributions described by vibronic coupling density. From the analysis using a model tetracene dimer, a typical singlet fission system, the frequency dependence of vibronic couplings in each electronic state is found to be significantly different from that of another depending on the nature of the electronic structure (intra/intermolecular excitation) and the related vibrational motion. These findings contribute not only to the fundamental understanding of the singlet fission mechanism from the viewpoint of vibronic couplings but also to opening a new path to designing highly efficient singlet fission materials through phonon-bath engineering.
Read full abstract