Proper ore characterisation is essential for understanding ore deposits and developing efficient mineral processing flow sheets. Conventional mineralogical and chemical techniques are usually used to study ores, but they can be destructive and, in some cases, provide only 2D information. Computed tomography (CT) is an emerging technology in the raw materials sector enabling the non-destructive 3D analysis of the ore mineralogy and microstructure. However, single-energy CT (SECT) has some limitations concerning the accurate imaging and differentiation of polyphase geomaterials comprising a broad range of attenuation properties. By contrast, dual-energy CT (DECT) uses two different X-ray energies to acquire data, which can be used to distinguish between materials with similar attenuation properties. This study explored the application of DECT for the analysis of a polyphase graphitic ore. A sequential fusion approach was utilized to combine data obtained from different X-ray energy scans at high spatial resolution, and varying weighting factors were applied to determine the optimal contribution of each energy level and spectrum. Both, SECT and DECT datasets were quantitatively evaluated based on the contrast-to-noise-ratio (CNR) and Q factor. The findings demonstrate that DECT significantly improves image contrast compared to SECT while further increases image sharpness. As a result, DECT may enable more accurate segmentation and, therefore, more accurate quantitative 3D analysis of graphite ores.