Slew-rate enhancement (SRE) techniques assist the charge transfer process in OTA-based switched-capacitor circuits. Parallel-type slew-rate enhancement circuits, i.e., circuits that provide a feed-forward path external to the main OTA, are attractive solutions, since they introduce a further degree of freedom in the speed/power consumption design space without affecting other specifications regarding the main OTA. This technique lends itself to be employed jointly with advanced OTA topologies in order to compose a highly energy efficient OTA/SRE system. However, insights in design choices such as power optimization are still missing for such systems. Here we discuss system level choices with the help of a simple model. Using precise electrical simulations, we demonstrate energy savings greater than 30% for different OTA/SRE systems implemented in a standard 180-nm CMOS technology.
Read full abstract