An analysis and design of a zero-current-switching (ZCS) Class-D current-source driven rectifier for the lighting applications is presented, which is one of the resonant rectifiers as a power-factor corrector to improve a poor power-factor and high line current harmonic of a single-stage converter. A high power-factor is achieved by the utilization of output characteristics of a Class-D ZCS rectifier, which is inserted between the front-end bridge rectifier and the bulk-filter capacitor. The conduction angle of the bridge rectifier diode current was increased and a low-line current harmonic and a power-factor near unity can be obtained. The design procedure is based on the principle of the Class-D ZCS rectifier, which also ensures more accurate results and the proposed scheme provides a high efficiency and a more systematic and feasible analysis methodology. The active switches can be operated under the soft-switching condition. The validity of this approach was confirmed by simulation and experimental results.
Read full abstract