Rationale and ObjectivesTo develop and validate a predictive model for osteoporosis and osteopenia prediction by fusing deep transfer learning (DTL) features and classical radiomics features based on single-source dual-energy computed tomography (CT) virtual monochromatic imaging. MethodsA total of 606 lumbar vertebrae with dual-energy CT imaging and quantitative CT (QCT) evaluation were included in the retrospective study and randomly divided into the training (n=424) and validation (n=182) cohorts. Radiomics features and DTL features were extracted from 70-keV monochromatic CT images, followed by feature selection and model construction, radiomics and DTL features models were established. Then, we integrated the selected two types of features into a features fusion model. We developed a two-level classifier for the hierarchical pairwise classification of each vertebra. All the vertebrae were first classified into osteoporosis and non-osteoporosis groups, then non-osteoporosis group was classified into osteopenia and normal groups. QCT was used as reference. The predictive performance and clinical usefulness of three models were evaluated and compared. ResultsThe area under the curve (AUC) of the features fusion, radiomics and DTL models for the classification between osteoporosis and non-osteoporosis were 0.981, 0.999, 0.997 in the training cohort and 0.979, 0.943, 0.848 in the validation cohort. Furthermore, the AUCs of the abovementioned models for the differentiation between osteopenia and normal were 0.994, 0.971, 0.996 in the training cohort and 0.990, 0.968, 0.908 in the validation cohort. The overall accuracy of the abovementioned models for two-level classifications was 0.979, 0.955, 0.908 in the training cohort and 0.918, 0.885, 0.841 in the validation cohort. Decision curve analysis (DCA) showed that all models had high clinical value. ConclusionThe feature fusion model can be used for osteoporosis and osteopenia prediction with improved predictive ability over a radiomics model or a DTL model alone.
Read full abstract