Researchers in biomedical sciences must continually re-evaluate their investment in experiments using laboratory animals. Our group is interested in various signalling pathways that underlie physiological and pathophysiological functioning of the mammalian heart. Two important resources for this type of work are isolated cardiomyocytes and homogenized or preserved sections of whole myocardium. In order to improve our experimental approach ethically, we devised an adaptation of the Langendorff whole-heart retrograde perfusion technique that allows the isolation of adult rat ventricular cardiomyocytes and processing/storage of myocardium from the same heart. This could result in a 50% reduction in the number of animals required for certain experiments. We believe that a generalized adoption of this method would represent a meaningful reduction of animal use in our field of research and, furthermore, strengthen data sets by permitting correlation between myocyte function and various parameters of myocardial biochemistry/structure in individual hearts. This approach is of particular relevance for studies of cardiac pathology, given the cost and time involved in generating experimental disease models.
Read full abstract