With the emphasis on energy conversion and energy-saving technologies, the single-phase pulse width modulation (PWM) rectifier method is widely used in urban rail transit because of its advantages of bidirectional electric energy conversion and higher power factor. However, due to the complex control and harsh environment, it can easily fail. Faults can cause current and voltage distortion, harmonic increases and other problems, which can threaten the safety of the power system and the train. In order to ensure the stable operation of the rectifier, incidences of faults should be reduced. A fault diagnosis technique based on Euclidean norm fusion multi-frequency bands and multi-scale permutation entropy is proposed. Firstly, by the optimal wavelet function, information on the optimal multi-frequency bands of the fault signal is selected after wavelet packet decomposition. Secondly, the multi-scale permutation entropy of each frequency band is calculated, and multiple fault feature vectors are obtained for each frequency band. To reduce the classifier’s computational cost, the Euclidean norm is used to fuse the multi-scale permutation entropy into an entropy value, so that each frequency band uses an entropy value to characterize the fault information features. Finally, the optimal multi-frequency bands and multi-scale permutation entropy after fusion are used as the fault feature vector. In the simulation system, it is shown that the method’s average accuracy is 78.46%, 97.07%, and 99.45% when the SNR is 5 dB, 10 dB, and 15 dB, respectively. And the fusion of multi-scale permutation entropy can improve the accuracy, recall rate, precision, and F1 score and reduce the False Alarm Rate (FAR) and the Missing Alarm Rate (MAR). The results show that the fault diagnosis method has high diagnosis accuracy, is a simple feature fusion method, and has good robustness to working conditions and noise.
Read full abstract