In recent years, numerous research efforts have been dedicated toward developing efficient implantable devices for brain stimulation. However, there are limitations and challenges with the current technologies. They include neuron population stimulation instead of single neuron level, the size, the biocompatibility, and the device lifetime reliability in the patient's brain. We have recently proposed the concept of wireless optogenetic nanonetworking devices (WiOptND) that could address the problem of long term deployment, and at the same time target single neuron stimulation utilizing ultrasonic as a mode for energy harvesting. In addition, a number of charging protocols are also proposed, in order to minimize the quantity of energy required for charging, while ensuring minimum number of neural spike misfirings. These protocols include the simple charge and fire, which requires the full knowledge of the raster plots of neuron firing patterns, and the predictive sliding detection window, and its variant Markov-chain based time-delay patterns, which minimizes the need for full knowledge of neural spiking patterns as well as number of ultrasound charging frequencies. Simulation results exhibit a drop for the stimulation ratio of ~ 25% and more stable trend in its efficiency ratio (standard deviation of ~0.5%) for the Markov-chain based time-delay patterns protocol compared with the baseline change and fire. The results show the feasibility of utilizing WiOptND for long-term implants in the brain, and a new direction toward precise stimulation of neurons in the cortical microcolumn of the brain cortex.
Read full abstract