Abstract
Individual neurons are heterogeneous and have profound impact on population activity in a complex cortical network. Precise experimental control of the firing of multiple neurons would be therefore beneficial to advance our understanding of cell–network interactions. Except for direct intracellular stimulation, however, it is difficult to gain precise control of targeted neurons without inducing antidromic activation of untargeted neurons. To overcome this problem, we attempt to create a sparse group of photosensitized neurons via transfection of Channelrhodopsin-2 (ChR2) in primary dissociated cultures and then deliver light-addressed stimulation exclusively to these target neurons. We first show that liposome transfection was able to express ChR2 in 0.3–1.9% of cells plated depending on cell density. This spatially sparse but robust expression in our neuronal cultures offered the capability of single cell activation by illuminating a spot of light. We then demonstrated that delivering a pulsed train to photo-activate a single neuron had a substantial effect on the activity level of an entire neuronal culture. Furthermore, the activity level was controllable by altering the frequency of light illumination when 4 neurons were recruited as stimulation targets. These results suggest that organized activation of a very small population of neurons can provide better control over global activity of neuronal circuits than can single-neuron activities by themselves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.