This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.
Read full abstract