Abstract

This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.