One of the main objectives of the Joint Global Ocean Flux Studies (JGOFS) program is to develop an understanding of the factors controlling organic carbon production in the ocean and the time-varying vertical flux of carbon from surface waters (US JGOFS (1990) US JGOFS Planning Report Number 11; Sarmiento and Armstrong (1997) US JGOFS Synthesis and Modeling Project Implementation Plan). A considerable amount of evidence suggests that carbon cycling and the potential for exporting carbon from ocean systems is a function of food web structure. As part of the US JGOFS Arabian Sea Studies, the biomass of planktonic organisms, ranging from heterotrophic bacteria through microplankton-sized organisms, was estimated using a variety of methods including flow cytometry and microscopy. This is a first attempt to combine biomass data from a number of sources, evaluate the structure of the food web, examine changes in food web structure in relation to seasonal or spatial features of the study area, and look for indications of how changing structure affects carbon-cycling processes. Biomass in the upper 100 m of the water column ranged from approximately 1.5 to >5.2 gC m −2. Heterotrophic bacteria (Hbac) made up from 16 and 44% of the biomass; autotrophs comprised 43–64%; and the remainder was made up of nano- and microheterotrophs. Autotrophs and nano- and microheterotrophs showed a general pattern of higher values at coastal stations, with the lowest values offshore. Heterotrophic bacteria (Hbac) showed no significant spatial variations. The Spring Intermonsoon and early NE Monsoon were dominated by autotrophic picoplankton, Prochlorococcus and Synechococcus. The late NE Monsoon and late SW Monsoon periods showed an increase in the larger size fractions of the primary producers. At several stations during the SW Monsoon, autotrophic microplankton, primarily diatoms and Phaeocystis colonies, predominated. Increases in the size of autotrophs were also reflected in increasing sizes of nano- and microheterorophs. The biomass estimates based on cytometry and microscopy are consistent with measurement of pigments, POC and PON. Changes in community structure were assessed using the percent similarity index (PSI) in conjunction with multidimensional scaling (MDS) or single-linkage clustering analysis to show how assemblages differed among cruises and stations. Station clustering reflected environmental heterogeneity, and many of the conspicuous changes could be associated with changes in temperature, salinity and nutrient concentrations. Despite inherent problems in combining data from a variety of sources, the present community biomass estimates were well constrained by bulk measurements such as Chl a, POC and PON, and by comparisons with other quantitative and qualitative studies. The most striking correlation between food web structure and carbon cycling was the dominance of large phytoplankton, primarily diatoms, and the seasonal maxima of mass flux during the SW Monsoon. High nutrient conditions associated with upwelling during the SW Monsoon would explain the predominance of diatoms during this season. The sinking of large, ungrazed diatom cells is one possible explanation for the flux observations, but may not be consistent with the observation of concurrent increases in larger microzooplankton consumers (heterotrophic dinoflagellates and ciliates) and mesozooplankton during this season. Food-web structure during the early NE Monsoon and Intermonsoons suggests carbon cycling by the microbial community predominated.