Interfaces of heterostructures are routinely studied for different applications. Interestingly, monolayers of the same material when interfaced in an unconventional manner can bring about novel properties. For instance, CdS monolayers, stacked in a particular order, are found to show unprecedented potential in the conversion of nanomechanical energy, solar energy, and waste heat into electricity, which has been systematically investigated in this work, using DFT-based approaches. Moreover, stable ultrathin structures showing strong capabilities for all kinds of energy conversion are scarce. The emergence of a very high out-of-plane piezoelectricity, |d33| ≈ 56 pm/V, induced by the inversion symmetry broken in the buckled structure helps to supersede the previously reported bulk wurzite GaN, AlN, and Janus multilayer structures of Mo- and W-based dichalcogenides. The piezoelectric coefficients have been found to be largely dependent on the relative stacking between the two layers. CdS bilayer is a direct band gap semiconductor, with its band edges straddling the water redox potential, thereby making it thermodynamically favorable for photocatalytic applications. Strain engineering facilitates its transition from type I to type II semiconductor in CdS bilayer stacked over monolayer boron phosphide, and the theoretically calculated power conversion efficiency (PCE) in the 2D excitonic solar cell exceeds 27% for a fill factor of 0.8, which is much higher than that in ZnO/CdS/CuInGaSe solar cell (20% efficiency). Thermoelectric properties have been investigated using semi classical Boltzmann transport equations for electrons and phonons within the constant relaxation time approximation coupled to deformation potential theory, which reveal ultralow thermal conductivity (κl ≈ 0.78 W m-1 K-1) at room temperature because of the presence of heavy element Cd, strong anharmonicity (high mode Gruneisen parameter at long wavelength, phonon lifetime <5 ps), low phonon group velocity (4 km/s), and low Debye temperature (260 K). Such a low thermal conductivity is lower than that of dumbbell silicene (2.86 W m-1 K-1), SnS2 (6.41 W m-1 K-1) and SnSe2 (3.82 W m-1 K-1), and SnP3 (4.97 W m-1 K-1). CdS bilayer shows a thermoelectric figure of merit (ZT) ≈ 0.8 for p-type and ∼0.7 for n-type doping at room temperature. Its ultrahigh carrier mobility (μe ≈ 2270 cm2 V-1 s-1) is higher than that of single-layer MoS2 and comparable to that in InSe. The versatile properties of CdS bilayer together with its all-round stability supported by ab initio molecular dynamics simulation, phonon dispersion, and satisfaction of Born-Huang stability criteria highlight its outstanding potential for applications in device fabrication and applications in next-generation nanoelectronics and energy harvesting.
Read full abstract