Like other clinical biomarkers, trajectories of estimated glomerular filtration rate (eGFR) after kidney transplant are characterized by intra-individual variability. These fluctuations hamper the distinction between alarming graft functional deterioration or harmless fluctuation within the patient-specific expected reference range of eGFR. To determine whether a deep learning model could accurately predict the patient-specific expected reference range of eGFR after kidney transplant. A multicenter diagnostic study consisted of a derivation cohort of 933 patients who received a kidney transplant between 2004 and 2013 with 100 867 eGFR measurements from University Hospitals Leuven, Belgium, and 2 independent test cohorts: with 39 999 eGFR measurements from 1 170 patients, 1 from University Hospitals Leuven, Belgium, receiving transplants between 2013 and 2018 and 1 from Hannover Medical School, Germany, receiving transplants between 2003 and 2007. Patients receiving a single kidney transplant, with consecutive eGFR measurements were included. Data were analyzed from February 2019 to April 2021. In the derivation cohort 100 867 eGFR measurements were available for analysis and 39 999 eGFR measurements from the independent test cohorts. A sequence-to-sequence model was developed for prediction of a patient-specific expected range of eGFR, based on previous eGFR values. The primary outcome was the performance of the deep learning sequence-to-sequence model in the 2 independent cohorts. In this diagnostic study, a total of 933 patients in the training sets (mean [SD] age, 53.5 [13.3] years; 570 male [61.1%]) and 1170 patients in the independent test sets (cohort 1 [n = 621]: mean [SD] age, 58.5 [12.1] years; 400 male [64.4%]; cohort 2 [n = 549]: mean [SD] age, 50.1 [13.0] years; 316 male [57.6%]) who received a single kidney transplant most frequently from deceased donors, the sequence-to-sequence models accurately predicted future patient-specific eGFR trajectories within the first 3 months after transplant, based on the previous graft eGFR values (root mean square error, 6.4-8.9 mL/min/1.73 m2). The sequence-to-sequence model predictions outperformed the more conventional autoregressive integrated moving average prediction model, at all input/output number of eGFR values. In this diagnostic study, a sequence-to-sequence deep learning model was developed and validated for individual forecasting of kidney transplant function. The patient-specific sequence predictions could be used in clinical practice to guide physicians on deviations from the expected intra-individual variability, rather than relating the individual results to the reference range of the healthy population.