We analyze the scalability of amplifying the output from a single-frequency diode laser operating at 1178 nm through the utilization of a core pumped Raman fiber amplifier. A detailed model that accounts for stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in relation to the fiber mode field diameter, length, seed power, and available pump power in both co-pumped and counter-pumped configurations is developed. The backward travelling Stokes light is initiated from both spontaneous Brillouin and spontaneous Raman processes. It is found that when fiber length is optimized, the amplifier output scales linearly with available pump power. Although higher amplifier efficiency is obtained with higher seed power, the output power diminishes. In order to mitigate the SBS process for further power scaling, we employ and optimize a multi-step temperature distribution. Finally, we consider the feasibility of generating the D(2a) and D(2b) lines in a sodium guide star beacon from a single Raman amplifier by examining four-wave mixing (FWM).