The Nugent score, limited by subjectivity and personnel requirements, lacks accuracy. Establishing a precise and simple molecular test is therefore essential for detecting vaginal microbiota compositions and evaluating vaginal health. We evaluated the vaginal health of Chinese women using quantitative polymerase chain reaction (qPCR) to target Lactobacillus crispatus (L. crispatus), L. iners, Gardnerella vaginalis (G. vaginalis), Atopobium vaginae (A. vaginae), and Megasphaera phylotype1. bacterial vaginosis (BV)-related bacteria shared a fluorescent channel. Using 16S rDNA sequencing as a reference standard, we evaluated and validated the diagnostic accuracy of the qPCR assay. Both qPCR and 16S rDNA sequencing demonstrated 90.5% concordance in segregating vaginal community state type (CST), as visualized through heatmaps and PCoA. Spearman's correlation analysis revealed strong correlations between the two methods in calculating the RA of L. crispatus (CST I), L. iners (CST III), and BV-related bacteria (CST IV), with coefficients of 0.865, 0.837, and 0.827, respectively. Receiver operating characteristic analysis showed that qPCR had significant diagnostic accuracy for CST I, CST III, and CST IV (molecular BV), with area under the curve values of 0.967, 0.815, and 0.950, respectively, indicating strong predictive power. Vaginal health can be evaluated using a single qPCR amplification experiment, making the multiplex qPCR assay a highly accurate tool for this purpose.
Read full abstract