The structural and electronic characters of four types of hydroxyl group-substituted anthocyanidins (pelargonidin, cyanidin, delphinidin, and aurantinidin) were examined using quantum chemical calculations. For these cationic molecules, both the planar and non-planar structures in the electronic ground state were determined at the B3LYP/D95 level of theory. We revealed that the planar structure is slightly more stable than the non-planar structure for each molecule. For the optimized planar structures, single excitation–configuration interaction (SE–CI) based on the restricted Hartree–Fock (RHF) wave function was evaluated and the electronic character in the low-excited states was discussed in terms of the MO theory. Symmetry adapted cluster (SAC)/SAC-CI calculations were also carried out to estimate the excitation energies precisely. The results showed that hydroxylation of the phenyl group causes a change in the excitation energies without taking the solvent effects into account. The results are in agreement with spectral experiments and previous MO calculations.