BackgroundNasopharyngeal carcinoma (NPC) is an assertive malignancy with partially understood underlying mechanisms, urging further study into its diverse and dynamic tumor microenvironment (TME) to bolster diagnosis, treatment, and prognostic accuracy.AimsTo track the evolutionary route of metastasis, here we perform a yielding scRNA-seq data from 24 primary carcinoma, 7 peripheral blood mononuclear cell (PBMC) nasopharyngeal carcinoma, and 7 metastatic carcinoma patients’ sample.Materials and methodsFollowing high quality control and filtration, a total of 292,298 cells from these tumors were classified into 10 clusters: T cells, B cells, Macrophages/Monocytes, Natural Killer (NK) cells, Plasma cells, plasmacytoid Dendritic Cells, Migratory Dendritic Cells, Mast cells, Cancer-Associated Fibroblasts, and Epithelial cells.ResultsBy comparing and analyzing the different functional capacities of cellular entities within primary and metastatic nasopharyngeal carcinoma, coupled with a detailed investigation into the heterogeneity and differential fate trajectories of T cells, B cells, and myeloid cells, as well as assessing the interactions of cell–cell communicative heterogeneity between these carcinogenic states, we established single-cell atlases for primary and metastatic tumors and identified a large number of potential therapeutic targets.ConclusionThis comprehensive analysis significantly advances our understanding of nasopharyngeal carcinoma (NPC) metastasis by detailing the evolutionary dynamics and the impact of the tumor microenvironment at a single-cell resolution, thereby laying a crucial foundation for future metastatic tumor research and providing new insights into immune heterogeneity, molecular interactions, and potential therapeutic strategies for NPC.
Read full abstract