Background and objectivesThe morphological examination of bone marrow (BM) cells is essential in both diagnosing and treating various hematologic diseases. However, it is still done manually with a heavy workload. An artificial intelligence-assisted diagnosis support system of BM cells is highly required to reduce the workloads of examiners and improve the reproducibility of the results. MethodsIn this paper, we proposed an artificial intelligence-assisted diagnosis support system of morphological examination based on bone marrow smears including cells detection, classification and prediction of leukemia types. For cell detection, we trained the novel YOLOX-s model to locate cells precisely and obtain single cell images. For cell classification, we regarded it as a fine- grained classification task and proposed a novel architecture called MLFL-Net utilizing multi-level features. Furthermore, we predicted the leukemia types on a dataset including 40 normal people (BM transplantation donors) and 40 patients of different kinds of acute leukemia according to the World Health Organization (WHO) standard. ResultsWe constructed a large-scale data set of 11,788 fully-annotated micrographs from 728 smears and 131,300 expert-annotated single cell images. With the data set, the detection model achieved 0.9797 AUC and 4.33% box placement error. For cell classification, the total accuracy of our proposed MLFL-Net reached 89.53% which outperformed all the other related models in identifying cell categories. In the meantime, we took acute leukemia as an example to explore the leukemia types prediction procedure of hematological disease. It generated the same diagnostic prediction as the experts gave for 92.5 percent of the cohort. ConclusionThis Artificial Intelligence-assisted system can be implemented to aid in clinical decision making and accelerate diagnosis. The method will contribute to promote the intelligence and modernization of BM cytomorphology, which has vital significance of the development of the medical career.
Read full abstract