We describe our efforts to observe squeezing, and related nonclassical effects, in three forward four-wave mixing experiments using sodium vapor as a nonlinear medium. In a single-beam experiment with homodyne detection, we found optically phase-sensitive noise, which was radio-frequency phase insensitive, in a cw dye-laser beam that had propagated through sodium vapor. The minima of the phase-sensitive noise were always at or above the coherent-state value. In our forward four-wave mixing experiment with probe–conjugate-beam direct detection and correlation, we found that the sodium-vapor interaction produced positive noise correlation between the probe and conjugate beams. The correlation, however, did not exceed the excess noises on these beams, so that a nonclassical behavior was not demonstrated. Finally, our forward four-wave mixing experiment with probe–conjugate-beam combination and homodyne detection did demonstrate the generation of squeezed-state light in our setup. Optically phase-sensitive noise with a minimum falling 4% below the coherent-state level was observed.
Read full abstract