Conventional photovoltaic (PV) modules (exclude interdigitated back contact modules) with silicon or gallium arsenide PV cells often have significant inactive module surface area. This results from wafer cutting techniques and metal contacts that reduce the module’s collection area and the resultant power conversion efficiency. A holographic light collector (HLC) combining a low-cost holographic optical element and a diffuser into conventional PV modules is proposed and evaluated to collect the solar illumination over the inactive module area. The angular tolerance and extra annual energy yield (EY) of the HLC are analyzed. It is found that improvements in EY of 4.5%, 4.1%, and 3.8% can be obtained when PV panels are deployed with two-axis tracking systems, single-axis tracking systems, and without tracking systems, respectively.
Read full abstract