The present investigation reports mechanical properties of novel multicomponent TixCuyFe20Co20Ni20 high entropy alloys (HEAs) with different alloy chemistry (x/y = 1/3, 3/7, 3/5, 9/11, 1, 11/9 and 3/2). The alloy cylinders were prepared by vacuum arc melting-cum-suction casting route. The detailed electron microscopic observations reveal the presence of three different solid solution phases; FCC (a1) phase, FCC (a2) phase and BCC (b) phase for all the investigated alloys, whereas ultrafine eutectic between FCC (a1) phase, and Ti2 (Co, Ni) - type Laves phase has been observed for the HEAs with x/y = 9/11, 1, 11/9 and 3/2. Room temperature compression test of the suction cast cylinders with aspect ratio of 2/1 has been conducted to obtain mechanical properties of the HEAs. The optimum combination of strength (~ 1.88 GPa) and plasticity (~ 21 %) is obtained for x/y = 9/11; indicating simultaneous improvement of strength as well as plasticity of the novel HEAs. Fractographic analysis of the fractured surfaces reveals mixed mode of fracture for x/y = 1/3, 3/7 and 3/5, ductile mode for x/y = 9/11 and 1, whereas brittle mode of fracture for x/y = 11/9 and 3/2.
Read full abstract