The balance between antioxidants and pro-oxidants plays a significant role in the context of oxidative stress, influenced by both physiological and non-physiological factors. In this study, 18 prescribed antibiotics (including doxycycline hydrochloride, tigecycline, rifampicin, tebipenem, cefuroxime, cefixime, potassium clavulanate, colistin, ampicillin, amoxicillin, amikacin, nalidixic acid, azithromycin, pipemidic acid trihydrate, pivmecillinam, aztreonam, fosfomycin sodium, and ciprofloxacin) were subjected to simultaneous determination of antioxidant and pro-oxidant potential to assess if pro-oxidant activity is a dominant co-mechanism of antibacterial activity or if any antibiotic exhibits a balanced effect. This study presents a recently developed approach for the simultaneous assessment of antioxidant and pro-oxidant potential on a single microplate in situ, applied to prescribed antibiotics. Ten antibiotics from eighteen showed lower antioxidant or pro-oxidant potential, while five exhibited only mild potential with DPPH50 values over 0.5 mM. The pro-oxidant antioxidant balance index (PABI) was also calculated to determine whether antioxidant or pro-oxidant activity was dominant for each antibiotic. Surprisingly, three antibiotics-doxycycline hydrochloride, tigecycline, and rifampicin-showed significant measures of both antioxidant and pro-oxidant activities. Especially notable was tebipenem, a broad-spectrum, orally administered carbapenem, showed a positive PABI index ratio, indicating a dominant antioxidant over pro-oxidant effect. These findings could be significant for both therapy, where the antibacterial effect is enhanced by radical scavenging activity, and biotechnology, where substantial pro-oxidant activity might limit microbial viability in cultures and consequently affect yield.