Objective: To investigate the correlations between subjective nasal patency, nasal valve area size and aerodynamic parameters in normal nasal cavity by means of numerical simulation, and to explore the effect of nasal valve on nasal subjective sensation and nasal airflow regulation. Methods: A total of 52 healthy participants (31 males and 21 females) with the average age of 37.8 years, were recruited from the outpatient Department of Otorhinolaryngology Head and Neck Surgery, the Ninth People's Hospital Affiliated to the Medical College of Shanghai Jiao Tong University between January and August 2023. Visual Analog Scale (VAS) scores for unilateral nasal subjective sensation were obtained from all participants. Additionally, the aerodynamic characteristics of inspiratory airflow were simulated. A correlation matrix analysis was conducted to identify the correlation strength between these subjective and objective parameters. Results: VAS scores showed negative correlations with unilateral nasal valve cross-sectional area (r=-0.85, P<0.01) and unilateral intranasal airflow (r=-0.57, P<0.01), and was a positive correlation with unilateral nasal resistance (NR) at the front-end of inferior turbinate (r=0.61, P<0.01). The average cross-sectional area of unilateral nasal valve was (0.85±0.35) cm2. The cross-sectional area of unilateral nasal valve was negatively correlated with unilateral NR (r=-0.50, P<0.01), and positively correlated with unilateral nasal airflow (r=0.61, P<0.01). The NR at the nasal valve area accounted for (40.41±23.54)% of the total unilateral NR. Nearly half of the unilateral NR [(46.74±21.38)%] and air warming [(49.96±10.02)%] occurring before the front end of inferior turbinate were achieved. Conclusions: The nasal valve area plays a crucial role in influencing nasal NR, unilateral nasal airflow, and changes in nasal airflow temperature. Moreover, it is associated with subjective perception of nasal patency.