1H polarization quantification is important for dissolution-dynamic nuclear polarization (dDNP) but can be cumbersome due to the requirement of acquiring thermal equilibrium signals and measurements that are complicated by large background signals. 1H nuclear magnetic resonance (NMR) spectra can also be deleteriously influenced by line distortions linked with radiation damping from 1H DNP and cannot be used for accurate calculation of 1H polarization. Determining 1H polarization via immediate 13C lineshape analysis of a simple molecule removes such complications. We present 13C-sodium formate as a straightforward system for indirect 1H polarimetry. The 13C NMR spectra acquired under dDNP conditions have distinct features that are readily reproduced with 13C lineshape simulations. 1H polarizations built-up during 1H DNP were indirectly inferred by fitting simulations to 13C lineshapes. We provide the MATLAB scripts used for 13C lineshape analysis in order that the method can be readily implemented in other laboratories.
Read full abstract