The study is focused on Na2O and/or K2O influence on a new sol–gel derived SeO2–B2O3–SiO2–P2O5–CaO bioactive system.The structural changes induced by Na2O and/or K2O addition were correlated with the samples behavior in simulated biological media. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structure and the type of the chemical bonds. The morphology of the samples was characterized through scanning electron microscopy (SEM). XRD results pointed out a prevalent vitreous structure with an incipient hydroxyapatite (HA) crystalline phase. FTIR results revealed a complex network consisting of silicate, phosphate and borate units, as well as the development of both A- and B-type of carbonate-substituted HA.The bioactivity of the samples was tested in vitro following the evolution of the apatite layers self-assembled on the samples surface in simulated body fluid. Their biocompatibility was investigated after samples surface functionalization with protein. The results indicate that sodium and potassium addition improves the biocompatibility by enhancement of protein adherence on samples surface and without to prevent the samples bioactivity.