Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.
Read full abstract