Making informed clinical decisions based on individualised outcome predictions is the cornerstone of precision psychiatry. Prediction models currently employed in psychiatry rely on algorithms that map a statistical relationship between clinical features (predictors/risk factors) and subsequent clinical outcomes. They rely on associations that overlook the underlying causal structures within the data, including the presence of latent variables, and the evolution of predictors and outcomes over time. As a result, predictions from sparse associative models from routinely collected data are rarely actionable at an individual level. To be actionable, prediction models should address these shortcomings. We provide a brief overview of a general framework for the rationale for implementing causal and actionable predictions using counterfactual explanations to advance predictive modelling studies, which has translational implications. We have included an extensive glossary of terminology used in this paper and the literature (Supplementary Box 1) and provide a concrete example to demonstrate this conceptually, and a reading list for those interested in this field (Supplementary Box 2).
Read full abstract