We investigate roaming in the photodissociation of acetaldehyde (CH3CHO), providing insights into the contrasting roaming dynamics observed for this molecule compared to formaldehyde. We carry out trajectory studies for full-dimensional acetaldehyde, supplemented with an analysis of a two-degree-of-freedom restricted model and obtain evidence for two distinct roaming pathways. Trajectories exhibit roaming at both shorter (9-11.5 au) and larger (14.5-22.9 au) maximum CH3-HCO separations, characterized by differing amounts of HCO rotation. No roaming trajectories were found in the intervening gap region. The roaming dynamics near 14.5-22.9 au are well-reproduced by the restricted model and involve passage through a centrifugal barrier, analogous to formaldehyde roaming. However, the shorter-range 9-11.5 au roaming appears unique to acetaldehyde and is likely facilitated by repulsive interactions absent in the simplified models. Phase space analysis reveals that this additional roaming pathway is inaccessible in the reduced dimensionality system. The findings suggest that acetaldehyde's increased propensity for roaming compared to formaldehyde may arise from the presence of multiple distinct roaming mechanisms rather than solely the higher roaming fragment mass.