Photochemical pollutants pose a substantial threat to human health in both outdoor and indoor environments. Herein, we prepare a class of gold nanoparticle-based colorimetric sensor arrays on optimized hydrophobic substrates using a simple pin-printing method for accurate identification and quantification of various gas-phase oxidants, as these microdetectors are low cost, sensitive, and easy to fabricate. For an array of AuNP sensors modified with various thiol-terminated ligands, a unique and distinguishable change in color (i.e., red, green, and blue response patterns) was obtained for each specific pollutant for molecular fingerprinting. Remarkable discrimination among 15 gases at a fairly low vapor concentration (i.e., 500 ppb) was illustrated using standard chemometric methods. Using digital imaging, the AuNP colorimetric sensor array offers ultrasensitive dosimetric identification of gas-phase oxidants relevant to outdoor and indoor air pollution, with limits of detection generally at sub-ppb levels for 2 h measurement. As a practical application, the sensor array is able to predict the overall air quality in indoor office environments over 24 h. Such sensor array based on chemically induced sintering of nanoparticles has significant implications for the development of nanosensors used in continuous monitoring of potential airborne pollutants at low concentrations from a large number of locations in a cost-effective manner.
Read full abstract