A Ca2+-independent sialic acid-specific lectin from two developmental stages of human placenta was similarly purified to apparent homogeneity by DEAE-cellulose chromatography, affinity chromatography on bovine submaxillary mucin, and gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration disclosed a molecular mass of 53 kDa. The specificity of the lectin for O-acetylsialic acids was substantiated by the dependence of hemagglutination on the presence of acetylated sialic acids on the surface of mammalian erythrocytes of various sources, by hapten inhibition in hemagglutination assays with protease-treated rabbit erythrocytes and by hapten inhibition of binding of labeled N-acetylneuraminic acid-bovine serum albumin to the lectin in a solid-phase assay. Bovine and equine submaxillary mucins that contain 9(7,8)-O-acetyl and 4-O-acetylsialic acids were potent inhibitors in contrast to the non-acetylated sialic acids of ovine submaxillary mucin. Absence of inhibitory efficiency of other negatively charged substances like phosphorylated sugars, glucuronic acid, heparin, or oligodeoxynucleotides emphasized the importance of structural features instead of simple ionic interaction. In the presence of acetylation, the pattern of inhibition by gangliosides in the solid-phase assay indicated a preference to alpha-2,8- or alpha-2,6-linked sialic acids in comparison to alpha-2,3-linked moieties. Chemical modification of the lectin by group-specific reagents allowed to emphasize the role of primarily lysine residues, but also, although less pronounced, arginine, tryptophan, and carboxyl groups for ligand binding and/or maintenance of the active conformational state. Application of reagents, specific for histidine or tyrosine residues, failed to affect lectin activity.
Read full abstract