The chemiluminescent reaction between sulphur monoxide (SO) and ozone has been studied in a fast flow system at pressures between 0·3 and 3·0 mmHg, These species undergo a rapid bimolecular reation (1) SO + O 3 = SO 2 + O 2 + 106 kcal/mole (1) to yield ground state products, where k 1 = 1·5 x 10 12 exp ( –2100/ RT ) cm 3 mole -1 s -1 . This reaction also yields electronically excited SO 2 molecules in the 1 B and 3 B 1 states. The 1 B SO 2 molecules are produced with up to 16 kcal/mole vibrational energy. Emission from the longer lived 3 B 1 state is vibrationally relaxed and provides no information about the initial energy distribution. Comparison with fluorescence studies shows that the 3 B 1 SO 2 molecules are produced mainly by collisional quenching of SO 2 molecules formed in the 1 B state. The formation of electronically excited SO 2 is also a simple bimolecular process, but it involves a higher energy barrier than formation of ground state SO 2 . Our measurements on the chemiluminescence, when combined with data on the quenching of the SO 2 fluorescence, yield the rate constants k 1a = 10 11 exp ( – 4200/ RT ) and k lb ≯ 3 x 10 10 exp ( –3900/ RT ) cm 3 mole -1 s -1 for the bimolecular reactions SO + O 3 = SO 2 ( 1 B ) + O 2 + 21 kcal/mole, (1 a ) SO + O 3 = SO 2 ( 3 B 1 ) + O 2 + 35 kcal/mole (1 b ) which form electronically excited SO 2 . No electronically excited O 2 appears to be formed. It is deduced that electronically excited SO 2 is produced by crossing to a separate potential surface at or near the transition state rather than by the formation of a highly vibrationally excited SO 2 molecule which crosses to the excited electronic state.