The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A non-polar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF, and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant leading to abrogation of the infection process.
Read full abstract