Sufficient vitamin D status is crucial for successful pregnancy and fetal development. The assessment of 25-hydroxyvitamin D (25(OH)D) concentrations is commonly used to evaluate vitamin D status. Our objective was to examine the interrelated biodynamics of maternal and neonatal total, free and bioavailable 25(OH)D in maternal-neonatal dyads at birth and their associations with homeostasis and neonatal birth anthropometry. We analysed a cohort of seventy full-term mother-child pairs. We found positive associations between all neonatal measures of vitamin D status. Maternal forms exhibited a similar pattern of association, except for the bioavailable maternal form. In multivariate analysis, both total and free maternal 25(OH)D concentrations were correlated with all neonatal forms (neonatal total 25(OH)D: 1·29 (95 % CI, 1·12, 1·46) for maternal total 25(OH)D, 10·89 (8·16, 13·63) for maternal free 25(OH)D), (neonatal free 25(OH)D: 0·15 for maternal total 25(OH)D, 1·28 (95 % CI, 0·89, 1·68) for maternal free 25(OH)D) and (0·13 (95 % CI, 0·10, 0·16), 1·06 (95 % CI, 0·68, 1·43) for maternal free 25(OH)D), respectively, with the exclusion of the bioavailable maternal form. We observed no significant interactions within or between groups regarding maternal and neonatal vitamin D parameters and maternal calciumand parathyroid hormone concentrations, and neonatal birth anthropometry. Our study indicates that bioavailable maternal and neonatal 25(OH)D have no significant effects on vitamin D equilibrium, Ca homeostasis and neonatal anthropometry at birth. However, we observed an interaction between maternal and neonatal total and free 25(OH)D concentrations at the maternal-neonatal interface, with no associations observed with other calciotropic or anthropometric outcomes.