The neuropathogenesis of human immunodeficiency virus (HIV)-associated dementia has remained elusive, despite identification of HIV as the causal agent. Although a number of contributing factors have been identified, the series of events that culminate in motor and cognitive impairments after HIV infection of the central nervous system (CNS) are still not known. Rhesus monkeys infected with simian immunodeficiency virus (SIV) manifest immunosuppression and CNS disease that is pathologically [L. R. Sharer et al. (1991) J. Med. Primatol. 20, 211-217] and behaviorally [E. A. Murray et al. (1992) Science 255, 1246-1249] similar to humans. The SIV model of HIV-associated dementia (HAD) is widely recognized as a highly relevant model in which to investigate neuropathogenesis. With better understanding of neuropathogenesis comes the opportunity to interrupt progression and to design better treatments for HAD. This becomes increasingly important as patients live longer yet still harbor HIV-infected cells in the CNS. The use of the SIV model has allowed the identification of neurochemical markers of neuropathogenesis important not only for HAD, but also for other inflammatory neurological diseases.
Read full abstract