Accurate and rapid detection of pathogenic bacteria is of great importance in the field of clinical diagnosis and food safety. Current methods for pathogenic bacteria detection have some problems in accurate, rapid and universal application. Here we proposed a pathogenic bacteria series piezoelectric quartz crystal (SPQC) sensor for achieving highly specific and sensitive detection of pathogenic bacteria. The universal sequences of common clinical pathogens screened by our group were used as detection targets. A new TALEs nuclease was synthesized as a recognition element, which recognizes double-stranded DNA at the level of a single base mismatch in the range of 17–19 bases. Targets could be specifically recognized by TALEs, resulting in the change of electrode surface, which would be further amplified by hybridization chain reaction and silver staining technique. Finally, the changes would be detected by SPQC system. This strategy was demonstrated to have excellent performance, enabling sensitive detection of targets with a detection limit of 25 cfu/mL in less than 3 h. What's more, the identification of single base mismatch could be achieved when the target ranging in length between 17 and 19 bases. The proposed method is rapid, accurate and easy universal application and expected to be applied in clinical diagnosis and food safety.
Read full abstract